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Abstract

The problem of choosing a prior distribution for the Bayesian in-
terpretation of measurements (specifically internal dosimetry mea-
surements) is considered using a theoretical analysis and by exam-
ining historical tritium and plutonium urine bioassay data from Los
Alamos. Two models for the prior probability distribution are pro-
posed: 1) the log-normal distribution, when there is some additional
information to determine the scale of the true result, and 2) the “al-
pha” distribution (a simplified variant of the gamma distribution)
when there is not. These models have been incorporated into ver-
sion 3 of the Bayesian internal dosimetry code in use at Los Alamos
(downloadable from our web site). Plutonium internal dosimetry at
Los Alamos is now being done using prior probability distribution
parameters determined self-consistently from population averages of
Los Alamos data.



1 Introduction

The Bayesian approach to interpretation of measurements in health physics has
several important advantages. It directly addresses the questions of greatest
interest; for example, “Did I have an intake of plutonium?” and “With what
probability?” (as opposed to “If I didn’t have an intake of plutonium, what
is the probability the measurement result would exceed the decision level?”).
It properly includes the effect of rarity of true positives in the problem of dis-
tinguishing signal from noise. It allows inferences about the values of many
parameters from little data (underdetermined problems). However, one of the
main disadvantages has been the lack of guidance in the choice of the prior prob-
ability distribution, which is always necessary in the Bayesian approach. The
Bayesian health physicist is allowed to choose the prior probability distribution
subjectively. It seems important, nevertheless, that objective data be used to
support educated guesses. The prior probability distribution has a small effect
on the inferred result when a large amount of measurement data is available.
In the opposite case, which is not unknown in health physics, the prior can
influence the inference in an important way.

In this paper we apply some theoretical concepts and make use of historical
data from tritium and plutonium internal dosimetry at Los Alamos to arrive at
suitable, simple models for the prior probability distribution. We propose two
models for the prior probability distribution: 1) the log-normal distribution,
when there is some additional information to determine the scale of the true
result, and 2) the “alpha” distribution (a simplified variant of the gamma dis-
tribution) when there is not. Although we specifically consider urine bioassay
measurements in the context of internal dosimetry, these concepts carry over to
many other areas of measurement interpretation. A broader discussion of the
use of Bayesian methods for internal dosimetry in contained in previous papers
in this series.[1, 2, 3, 4, 5]

At the practical level for internal dosimetry, we have incorporated these new
models for the prior probability distribution into version 3 of our Bayesian inter-
nal dosimetry code (the Bayes II software package, downloadable from our web
site www.lanl.gov\bayesian). The Bayesian unfolding algorithm is described in
detail in Ref. [4]. In order to carry out a Bayesian analysis of bioassay data
using the new models for the prior probability distribution, one needs only to
choose the value of a single parameter. When the worker has been involved
in an incident or incidents, the prior parameter characterizes the additional in-
formation on the possible magnitude of the intake (for example, nose swabs or
air monitor readings). When no incidents have occurred, the prior parameter
reflects the population average of the number of intakes (in a certain range of
magnitude) that occur per unit time. From Los Alamos plutonium data in re-
cent years, this number (the parameter ) is about 1 “intake” per 1000 workers
per year or even less.

The generic problem of Bayesian interpretation of Gaussian measurements
using the alpha prior probability distribution leads to a “universal curve”. This
single curve relates measurement result above background (in standard devia-



tions) to posterior odds of “positive” divided by the quantity aAt (At is the time
interval). For example, using this curve the Bayesian health physicist would de-
termine that the odds are 20 to 1 in favour of “positive” if the measurement
is 4.7 standard deviations above background for aAf = 0.001. In contrast, the
classical prescription of 1.645 standard deviations (for a false positive rate of
0.05)[6] leads to posterior odds of only 0.003 to 1 for an intake-or 300 to 1
against there having been an intake. This example shows the importance of the
Bayesian method when detecting rare events (« small).

2 Choice of Prior Probability Distribution

In general two cases exist: 1) where there is qualitative information or quantita-
tive information from other measurements giving a non-zero, although perhaps
very uncertain, estimate of the true intake amount, and 2) where there is not.

In the first case, the log-normal distribution is appropriate for the prior
probability distribution. The log-normal distribution for intake amount & is
given by

1 1 )
PO = bl g () (1)

When plotted on a log scale (versus In¢ rather than &), the log-normal distrib-
ution is Gaussian with maximum and median probability occuring at Ina and
standard deviation oy . The log-normal distribution can be very broad, for
example, with oy = 3 the standard deviation of In £ is 3, and when In £ varies
by 3, & varies by a factor of €2 & 20. Two standard deviations correspond to a
factor of 400. The value of a might be obtained from the other measurements,
for example for internal dosimetry based on urine measurements, the additional
measurements might be nose swabs, air monitoring data, faecal monitoring data,
wound count data, or in vivo count data. The value of oy would be chosen
depending on the relevance and quality of the additional measurements. We
normally use the additional measurements to define discrete categories, for ex-
ample “true air monitor alarm”, or “wound count greater than 7 Bq” that have
the same prior probability distribution.

In the case of no additional measurements, the prior probability distribution
is obtained using data from a population similar to that which is being measured.
For example, Fig. 1 shows tritium urine bioassay data for a worker population
over the time period 1998 and 1999. Data are selected for which a preceding
data point 14 days before (14 days £10%) was “zero” (below a critical level),
so that an elevated measured value corresponds to an intake occurring in the 14
day interval. It is apparent that the distribution is asymmetrical. The portion
of the distribution for negative values reflects measurement uncertainty, while
the portion of the distribution for positive values indicates the prior probability
distribution for intakes occuring in a 14 day time period as well as measurement
uncertainty. The observed distribution is in fact the convolution of the mea-
surement uncertainty distribution with the prior probability distribution for the
population.[2] The fit shown in Fig. 1 will be discussed in what follows.
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Figure 1: Distribution of tritium bioassay measurement results.

The data of Fig. 1 can be fitted by varying parameters of a function rep-
resenting the prior probability distribution. Reference [5] discusses fitting this
data using a log-normal or Pareto prior with or without a delta-function compo-
nent. However, we would like a simpler parameterization of the prior probability
distribution (fewer parameters) and one with a more satisfying theoretical jus-
tification.

We expect the distribution shown in Fig. 1 to depend on the time interval
At. As At increases there is more time for intakes to occur. Figure 2 shows
the same type of distribution as Fig. 1 except that the time period before
the preceding “zero” result was 28 rather than 14 days. The prior probability
distribution clearly changes, becoming broader.

In Rel. [4] we proposed that the prior probability distribution describing
intakes occuring in a time interval At would have the form

P(&) = (1 - AA)A(E) + Atw(?), (2)

where 0(§) is the delta function (the delta function, #(€), is the limit of very
narrow distributions peaked at £ = 0 and having unit integral, [d(£)dé = 1).
In Eq. 2, w(§) when multiplied by dt is the probability that an intake of amount
¢ in infinitesimal interval dé occurs in the infinitesimal time interval dt. The
integral

/0 T w()de = A (3)
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Figure 2: Distribution of tritium bioassay measurement results for a 28 day
sampling period.

when multiplied by dt represents the total probability of an intake in time
interval dt.

In this paper we generalize to cases where the normalization integral given
by Eq. 3 diverges. We consider intake probability functions of the form

e
wl§) = § (=), (1
where « is a probability per unit time, and the parameter A limits the distrib-
ution for large values of £. The total probability of an intake in time interval di
is now infinite because very small intakes have very large probability.
The prior probability distribution we are seeking is the probability distrib-
ution of intakes in a finite time interval At. It turns out that the probability
distribution of intakes in a finite time interval At is given by

aAt (¢ ant exp(—%)
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This distribution has normalization integral unity as must be true for any prob-
ability distribution. The distribution given by Eq. 5 is the gamma distribu-
tion, discussed in many reference books (e.g., see reference [7]). The function
I'(1 + aAt) is the gamma function, given by

P(§) =

I(l+2)~1-Cxz, (6)



for x << 1, where C is Euler’s constant, C = 0.577.

The relation between w(€), the probability that an intake of amount £ occurs
in an infinitesimal time interval dt, and P(£), the probability that the sum of
all intakes in a finite time interval At equals &, is the kinetic equation (“the
Fokker-Plank equation” [8]) of the process
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which equates the change in P occuring in time interval di to the difference in
probability events entering and leaving the interval d€. It is shown in Ref. [§]
that the gamma distribution satisfies Eq. 7 with w(£) given by Eq. 4. When the
normalization integral given by Eq. 3 is nondivergent, Eq. 2 provides a solution
of Eq. 7 for At small.

The distributions of tritium bioassay measurements shown in Figs. 1 and 2
are fit with gamma distributions having A = 800 Bq/L and variable s = aAf.
The fits have s increasing with At but not quite linearly. There are clearly
significant uncertainties because of the small number of events in each histogram
bin. Reasons for the non-linear scaling related to sample contamination will
be discussed later on. The measurement uncertainty distribution is assumed
Gaussian with o = 80 Bq/L.

In order to have only a single parameter we will use the limit of Eq. 5
for A — oo, an improper distribution with parameter o. We refer to this
distribution as the “alpha” distribution. The alpha distribution is truncated for

¢ > A and has the form
At aAt
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The alpha distribution with A — oo is scale invariant, meaning that its form is
the same no matter what the units or scale used. The log-normal and Pareto
distributions used in Rel. [5] can fit the data of Figures 1 and 2 equally well
but they have scale parameters that are small compared with the measurement
uncertainty. The assumption underlying the alpha distribution is that no matter
what the measurement uncertainty, the distribution will always be decreasing
and will never reveal a peak that would define a scale.

The alpha and gamma distributions describe situations where very small
intakes are very probable, so that no matter how small the time interval At
intakes will have occurred. Nevertheless,

P(§) = a(8),

as

At — 0,

as can be shown by integrating Eq. 8 from £ = 0 to some small positive value
and taking the limit At — 0.



When oAt is small, the alpha distribution is approximated by
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Using Eq. 9, we can identify aAt approximately as the probability of an intake
having & values that between some lower limit and e = 2.718 a2 3 times that
limit. Because of scale invariance, this applies also to measured bioassay data
values as well as intake amounts. The lower limit should be chosen large enough
to eliminate false positives. We will find it convenient later to take these limits
as 5 0 and 15 o, where o is the measurement uncertainty.

3 Example—Plutonium Internal Dosimetry—Log-
Normal Prior

At Los Alamos, plutonium intakes are divided into two categories: 1) incident-
related intakes where there are indications from the workplace that some off-
normal occurrence has taken place, and 2) non-incident-related intakes detected
only from routine urine bioassay samples. The log-normal distribution is used
for the prior probability distribution for the first category of intakes.

Incident-related intakes are further divided into subcategories depending on
the particular workplace indicators involved. These subcategories have been
defined and cover all plutonium work at Los Alamos since 1944. They are as
shown in Table 1.

Table 1: Incident types and average 23°Pu intakes since 1980

incident type number average intake(Bq) a(Bq)!
since 1980 (UF2.5) (UF3.0)

nose count>17 Bq (either side) 27 160 140 3
high nose count 33 100 80 1
high room air count 34 5 3 0.1
wound count>7 Bq 36 5 4 0.1
wound with excision 15 30 20 0.3
unspecified incident type 38 120 80 0.1
other incident type 50 6 2 0.1

T median of the log-normal distribution—see text

Table 1 shows the number of 23Pu incidents of each type since 1980 and
the average values of the intakes determined using the previous (UF2.5) and



current (UF3.0) versions of the Bayesian unfolding code. The date 1980 was
chosen based on two criteria: 1) the date is within the modern era where the
same basic facility was being used, and 2) early enough to include a large amount
of data. The current version of the Bayesian unfolding code uses a log-normal
prior probability distribution as given by Eq. 1 with oy = 3, having median
value determined by the above data. The median of a log-normal distribution
is given by a = ge’”%N/z = 5/90, where £ is the average value.

The following iterative process was used. The average intake values for the
various incident categories were determined using the previous version of the
code, which used a different prior (log-normal plus delta function with subjec-
tively determined parameters). These average values were used to determine the
rounded (to the nearest factor of 3) values of the median parameter a as shown
in Table 1. These medians defined the log-normal prior probability distribution
used in the new code. Using the new code the average intakes were recalculated
and found to be consistent with the rounded medians found using the old code,
so the log-normal medians were not adjusted further.

The data in Table 1 are for 2**Pu (for which most of the plutonium exposures
at Los Alamos occurred). The a values obtained in this way were applied to
situations involving 22*Pu, or *'Am using the factors shown in Table 2, which
are based on nominal isotope ratios expected to be present.

Table 2: Adjustment factors for a values

dominant factors

isotope 239py 238pyy 2T Am
239py 1 0.1 0.2
238py, 0.05 1 0.025
1AM 0.5 0.05 1

4 Example—Plutonium Internal Dosimetry—alpha
Prior

For plutonium intakes not related to known incidents, the alpha prior given by
Eq. 8 is used. The value of the parameter « was determined from historical
data since 1980. The raw data are shown in Table 3.

The numbers denoted by N(y1 < y.) appearing in Table 3 are the number
of bioassay data where there are two measurements y; and ¥y, separated by
At such that no intakes have occurred preceding the first measurement (using
the Bayesian unfolding code) and the first measured value is less than y. =
0.74mBqg/d. The numbers denoted by N(y; < y2 < y,) represent a subset
of those cases where an intake has occurred in the monitoring interval (using



Table 3: Non-incident-related intakes

nuclide At N(yr < ye)t Ny <y2 < yu)”
(years) (UF2.5) (UF3.0) (UF2.5) (UF3.0)
239py 1 13347 13398 23 23
9Py 2 6915 6927 16 15
9Py 3 4789 4800 10 10
238py 1 14461 14459 2 2
238py 2 7490 7486 2 2
B8py 3 5250 5248 1 1

T number of bioassay data pairs separated by At-see text
* number of intakes—see text

the Bayesian unfolding code) and the second measured value is in the range
Y < y2 < Y, where y; = 1.85mBq =~ 50 and y, = 5.6 mBq =~ 150, where o is
the measurement uncertainty standard deviation.

We use the data shown in Table 3 to determine « using Eq. 9. There is a
complication in that sometimes high measured values at the end of a monitoring
interval are the result of sample contamination rather than an intake occurring
in the monitoring interval. Sample contamination most frequently occurs if urine
samples are collected in the facility. A speck of dust with alpha activity as little
as 0.3 mBq (0.02 dpm) is a significant contamination. Sample contamination
has a fixed probability b per sample, thus

N = No(aAtIn(Z4) +b), (10)
Yi
where Ny is the total number of monitoring intervals of length At considered,
and /N is the number of cases where the second bioassay result was in the range
Y <y < 1. Fitting the data in Table 3 using Fq. 10, the results shown in
Table 4 are obtained.

Table 4: Values of the quantities o and b for non-incident-related intakes

nuclide a(yr bt b(yr—1)*
239py 2x107*+£3 x 1074 1.5 x1073+0.6 x 1073
238py 4x107°4+£9 x 1075 1x10744+2x107*

T probability of intake—see text
* probability of sample contamination—see text

It is apparent that « for non-incident-related intakes is extraordinarily small,
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Figure 3: Bioassay data and UF code fit for a “real” non-incident-related intake.

and we have only obtained an upper limit. Figures 3 and 4 show examples of
239Pu bioassay data used in Table 3 for cases that we can fairly clearly identify
as real intakes and contamination events, although the Bayesian unfolding code
considers them both to be intakes.

The current version of the Bayesian unfolding code (UF3.0) uses the alpha
prior probability distribution with ov = 0.001 for 23°Pu, 238Pu, and *' Am. This
value seems like an overestimate, particularly for 23*Pu, however, it is felt that
the small values of a obtained empirically for 22®Pu reflect the small fraction of
238py work for plutonium workers at Los Alamos. For those workers primarily
working with 22®Pu clearly a larger « is appropriate. The older version of the
code (UF2.5) used a different form for the prior probability distribution (log-
normal plus delta function with subjectively determined parameter values). As
seen in Table 3, the numbers obtained using the current code are essentially
unchanged, so the iteration process has converged.

5 Discussion

We have examined historical urine bioassay data for 2*Pu and ®H in order to
more objectively determine prior probability distributions for applications in
internal dosimetry. In situations where additional quantitative or semiquanti-
tative information exists the log-normal distribution is used, with the median
value and standard deviation determined by the additional information. In
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Figure 4: Bioassay data and UF code fit for what seems to be a spurious intake
caused by sample contamination.

other situations we use the alpha distribution with the parameter o determined
by population data. The parameter o might also be chosen subjectively. The
quantity aAf roughly has the meaning of the number of needles expected in
this particular haystack.

The interpretation of measurement results using the alpha prior probability
distribution is quite simple and natural. Figure 5 summarizes the situation.
Shown in Fig. 5 is the posterior odds ratio in favour of “positive” relative to
“zero” (true amount greater than or less than 0.10g) normalized by the quantity
aAt versus the measurement result normalized by 0. The quantity o is the net
measurement uncertainty standard deviation for zero true amount. It turns out
that by normalizing with aAt a “universal curve” independent of the value of
aAt is obtained for aAt << 0.1 (Fig. 5is an overplot for aAt = 0.01, 0.001, and
0.0001). As an example of the use of Fig. 5, assume that we desire at least 10 to
1 odds in favour of “positive” (posterior probability of “positive” = 10/11) and
want to know what decision level that requires. Assume that aAt is estimated
to have the value 0.001. The abscissa in Fig. 5 is then 10/0.001 = 10000. From
the plotted curve this corresponds to an ordinate value of about 4.6, which
means that the decision level must be 4.6 0.

Figure 5 allows a simple application of Bayesian statistics to the measure-
ment decision process, where « is determined either using population data or
subjectively. Mostly, however, one addresses more complex situations or one
wishes more detailed information, requiring the use of complex numerical cal-
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Figure 5: Universal curve of normalized posterior odds in favour of “positive”
versus measurement result.

culations. Computer codes for these calculations are available, for example our
Bayesian software packages I and II for Windows 95, 98, and NT, downloadable
from our Web site: www.lanl.gov\bayesian).

We use a Gaussian measurement uncertainty model. The measurement un-
certainty standard deviation is assumed to be given by

0 = 1/0% + BY + (Byar?)?, (11)

where ¥ is the true result, B enters for measurements based on counting (as
discussed in Ref. [5]) and By is a multiplicative biological/sample collection
protocol variability (typically 0.3 for urine samples with a specific gravity excre-
tion time correction). Another universal feature of the curve plotted in Fig. 5
is that it is essentially independent of the quantities B and By,;. Non-Gaussian
measurement uncertainly can greatly change Fig. 5 however. Non-Gaussian
effects may be investigated numerically (for example by varying the parameter
“beta” in our Bayesian software package I).

For the purpose of interpreting data an improper prior probability distrib-
ution such as the alpha distribution is simple and useful (this distribution is
improper because the normalization integral diverges when A — 00). The pos-
terior probability distribution is independent of A for A — o0, so this parameter
drops out of the problem of data interpretation. However, in order to simulate
data or calculate expectation values, a proper prior probability distribution is
necessary, which means that a finite value of the parameter a must be chosen.
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